New Sr-isotope stratigraphy (SIS) age-data from the Central Paratethys

LESS, György1, FRJIA, Gianluca2, FILIPESCU, Sorin3, HOLCOVÁ, Katarina4, MANDIC, Oleg5, SZTANO, Orsolya6

1University of Miskolc, Institute of Mineralogy and Geology, H-3515 Miskolc-Egyetemváros, Hungary
2Univ. Potsdam, Inst. für Erd- und Umweltwiss., Karl-Liebknecht str. 24, Haus 27, D-14476 Potsdam, Germany
3Babes-Bolyai University, Department of Geology, Str. Kogalniceanu 1, RO-40084 Cluj-Napoca, Romania
4Ustav geologe a paleontologie, Charles University in Prague, Albertov 6, CZ-12843 Praha 2, Czech Republic
5Geologisch-Paläontologische Abt., Naturhistorisches Museum in Wien, Burgring 7, A-1010, Wien, Austria
6Eotvos Lorand Univ., Dpt. of Physical and Applied Geology, H-1117 Budapest Pázmány P. setány I., Hungary

The Central Paratethys (CPT) was formed primarily as an inland sea of the Neotethys in the early Oligocene (covering the actual Carpathian and Eastern Alpine regions). It existed with mostly normal salinity roughly until the middle Serravallian and is characterized by rather endemic biota. Therefore, regional stages were introduced in the 60-70s of the 20th century. Their correlation to the global stages based on bio-, magneto- and sequence stratigraphy is in some cases still problematic and contradictory. A direct correlation of most important CPT sites to the numerical time scale is in progress by using SIS data, which can lead to a better correlation of the CPT regional stages to the global stages. Another outcome should be a detailed comparison between the interpretations of regional stages in different countries. Results listed below are the first data of our research.

The age of samples assigned to the basal and lower part of the Egerian CPT stage [Novaj (H), lower boundary stratotype: 24.6–24.0 Ma; Eger, Wind brickyard (H), holostrotype: 24.3–23.2 Ma; Csökös (H): 24.9–23.7 Ma; Budikovany (SK): 24.0–22.9 Ma] appeared to correspond to the late and terminal Chattian. These data are at least 2 Ma younger than expected (PILLER et al. 2007) and necessitate recorrelating the lower boundary of the Egerian within the late Chattian. SIS-data from sites with most primitive mioqupnsids (whose FO defines the lower boundary of the Egerian) outside the CPT mark late Chattian, too [P. Badisco (I): 24.3–23.8 Ma; Escombeou (F): 24.6–24.0 Ma]. The Bretha (SK) samples assigned to the upper, Miocene part of the Egerian mark 22.4–21.9 Ma (early Aquitanian).

Of the localities believed traditionally Egenburgian the SIS-age of the Danó Conglomerate from Szajla (H) appeared to be between 21.4 and 20.9 Ma corresponding both to late Aquitanian in accord with the newly found Mioquumpsina tani and to basal Egenburgian in the CPT subdivision. The Corușu (RO) sample with large pectinids marks 19.9–19.2 Ma (early Burdigalian). A younger (18.5–17.9 Ma) SIS-age (corresponding to about the Egenburgian/Ottangian boundary) has been obtained from the Budafok Sand from Budapest, Pacsirta Hill. Samples from the upper part of the Pitevskàra (Flikobovo) Sandstone from Parăd, Iona Valley (H) and Lipovany (SK) gave even younger Sr-isotope ages (18.2–17.6 and 18.3–17.7 Ma, respectively), which correspond rather to the early Ottangian. These data are, however, in accord with the Ottangian character of mollusks and also with the revised (17.5–16.9 Ma) age of the overlying rhyolitic tuff from Ipolytarnóc (PÁLFY et al. 2007).

In the case of the Várpalota, Bánya-pusza (H) localities similar SIS-ages have been obtained from both sides of the locally assigned Ottangian/Karpatian boundary (16.1–15.3 and 15.9–15.1 Ma, respectively) corresponding to the early Badenian and early Langhian. Similar (16.1–15.3 Ma) SIS-ages came out from the Egyházasgerge Sand from Csernel (H) and also from the schlier deposits of Cerová-Lieskové (SK) both thought to be Karpatian. The SIS-age (15.7–14.9 Ma) from the Szabol quarry in Várpalota (H) confirms the early Badenian biostratigraphic age of this site.

This research was supported by OTKA Grant No 100538.

References
